Publications Office
= of the European Union

Initiative for developing eProcurement Ontology

Transformation of the eProcurement
UML model into a formal
OWL ontology

Disclaimer

The views expressed in this report are purely those of the Author(s) and may not,
in any circumstances, be interpreted as stating an official position of the European
Union. The European Union does not guarantee the accuracy of the information
included in this study, nor does it accept any responsibility for any use thereof.
Reference herein to any specific products, specifications, process, or service by trade
name, trademark, manufacturer, or otherwise, does not necessarily constitute or
imply its endorsement, recommendation, or favouring by the European Union.

This report was prepared for the Publications Office of the European Union by

Infeurope.

Document metadata

Reference WP 1.6: Transformation of the eProcurement UML model into a
formal OWL ontology
Corporate Author Publications Office of the European Union

Author Eugeniu Costetchi

Reviewers Natalie Muric, Ioannis Rousochatzakis, George Vernardos
Contractor Infeurope S.A.

Framework contract 10688/35368

Work package WP 1.6

Delivery date 20 May 2020

Suggested readers project partners, future users, legal practitioners, software devel-

opers and architects

© European Union, 2020

Abstract

Publications Office of the European Union set off to build an eProcurement ontology.
The ultimate objective of the project is to put forth a commonly agreed ontology
that will conceptualise, formally encode and make available in an open, structured
and machine-readable format data about public procurement, covering end-to-end
procurement, i.e. from notification, through tendering to awarding, ordering, invoic-
ing and payment.

The process and the methodology adopted involve modelling the conceptual model
in Unified Modelling Language (UML) and then, by abiding a set of conventions
and recommendations, transform that model into a formal ontology expressed in
Web Ontology Language (OWL).

This document provides a working definition of the transformation rules from the
UML conceptual model into the formal OWL ontology and validation data shapes.
These rules are organised in accordance with the eProcurement ontology architecture.

Contents

1 Introduction 5
1.1 Stateof theart 5)
1.2 How to read this document 6
1.3 UML visual notation 7
14 Graffoo visual notation 8
2 Transformation of UML classes and attributes 9
2.1 Class 9
2.2 Abstract class L 10
2.3 Attribute e 11
2.4 Attribute owner 12
2.5 Attribute typeo 13
2.6 Attribute multiplicityo Lo 14
3 Transformation of UML connectors 20
3.1 Unidirectional association 20
3.2 Association SOUICe i e 22
3.3 Association target 22
3.4 Association multiplicity 23
3.5 Recursive association 24
3.6 Bidirectional association 26
3.7 Unidirectional dependency 26
3.8 Class generalisation 26
3.9 Property generalisation 27
3.10 Class equivalence 28
3.11 Property equivalence, 29
4 Transformation of UML datatypes 29
4.1 Primitive datatype oL 30
4.2 Structured datatypeso 32

Contents

4.3 Enumeration 32
) Transformation of UML descriptors 34
5.1 Name e 34
5.2 Note e 35
5.3 Comment 35
6 Additional rules 36

1. Introduction

1 Introduction

Publications Office of the European Union set off to build an eProcurement ontology
well motivated in |6, p.5-9]. The ultimate objective of the project is to put forth a
commonly agreed ontology that will conceptualise, formally encode and make avail-
able in an open, structured and machine-readable format data about public procure-
ment, covering end-to-end procurement, i.e. from notification, through tendering to
awarding, ordering, invoicing and payment [12].

The process and the methodology adopted involve modelling the conceptual model
in Unified Modelling Language (UML) [5] and then, by abiding a set of conventions
and recommendations, transform that model into a formal ontology [6, p.12-21]
expressed in Web Ontology Language (OWL) [15].

This document provides a working definition of the transformation rules from the
UML conceptual model into the formal ontology and validation data shapes. These
rules are organised in accordance with the eProcurement ontology architecture |6,
p.21-27].

1.1 State of the art

Much has been written about correspondences and between and transformation from
UML to OWL and vice versa [16]. The most significant literature on this topic
was published between 2006 and 2019 comprising three book chapters, nine journal
papers and multiple conference papers.

The work presented in [10] transforms into OWL some selected elements of UML
models containing multiple UML class, object and state-chart diagrams in order to
analyse consistency of the models. A similar approach is presented in [11], which is
focused on detecting inconsistency in models containing UML class and state-chart
diagrams.

The papers [8, 21, 22| investigate the differences and similarities between UML
and OWL in order to present transformations of selected (and identified as useful)
elements of UML class diagram. In [22], the need for UML-OWL transformation
is additionally motivated by not repeating the modelling independently in both
languages.

The paper [1| compares OWL abstract syntax elements to the equivalent UML
features and appropriate OCL statements. The analysis is conducted in the direction

1. Introduction

from OWL to UML. For every OWL construct its UML interpretation is proposed.

The works presented in [20, 19, 14] are focused on extracting ontological knowledge
from UML class diagrams and describe some UML-OWL mappings with the aim to
reuse the existing UML models and stream the building of OWL domain ontologies.

In [16] is presented a comprehensive review of the related work. We use it as a
guideline for ensuring the necessary coverage of the transformation rules specified
in this report. It is important to note here that all the UML elements are treated
here, but only the ones employed in the eProcurement conceptual model.

1.2 How to read this document

The reminder of this document comprises four sections covering major UML as-
pects. Section 2 treats classes and attributes. Following section deals with the main
connector types employed in the eProcurement model, namely: associations, depen-
dencies and generalisations. Section 4 explains how the datatypes and enumerations
should be transformed and, finally, Section 5 provides a few transformation rules
that are applicable to all UML elements and are concerned with comments, labels
and notes.

Each section provides a table with overview of the transformation rule set comprised
within. The table provides three columns, one for every layer of the ontology ar-
chitecture comprising rules: (a) in core ontology layer, (b) in data shape layer, and
(¢) in reasnoning layer.

Transformation rules are specified in a normative language and are aided by proto-
typical UML diagram fragments (usually preceding the rule) along with represen-
tation of the corresponding OWL fragment depicted in Graffoo visual notation [9].
The diagrams are provided side to side in order to increase comprehension, with
UML fragment on the left constituting the source of the transformation and the
OWL fragment on the right representing the final result of the transformation.

Each transformation rule is accompanied by the formal OWL representation, in
Turtle [4] and RDF/XML [17, 2| syntaxes, corresponding to the depicted UML
fragment from the preceding figure. RDF /XML is a syntax to express RDF graphs
as an XML document. Turtle is a textual syntax for RDF [18] that is compact and
resembles a natural text form with abbreviations for common usage patterns and
datatypes.

1. Introduction

1.3 UML visual notation

This section provides the main UML elements employed in this document. A de-
tailed description can be consulted in the standard specifications [5] and in the
user guide [3].

Simple Class Name Abstract Class Name
Class With Attributes Class With Attribute Multiplicity
attributel : xsd:string attributel : xsd:string [2..2]
attribute2 : OtherClass attribute2 : xsd:string [1..%|
attribute3 : xsd:string [*..2]
attributed : xsd:string [1..2]

Figure 1: UML visual notation for classes and attributes

< Enumeration>>
Controlled List

<DataType>
Datatype Name itemA="First item’

itemB="Second item’

Figure 2: UML visual notation for datatypes and enumerations

A C E
)

Association | min..max T Dependecy ' min..max
B D F

Figure 3: UML visual notation for association, generalisation, and dependency

Figure 1 depicts simple, abstract and regular classes with and without attribute
specifications. Note that no class methods are ever employed as this document as
the transformations aim at data structures only.

1. Introduction

Figure 2 depicts a primitive datatype and an enumeration. No complex datatypes
are depicted as they are treated in the same manner as classes are.

Figure 3 depicts association, generalisation and dependency connectors as the only
ones necessary to model the eProcurement conceptual model.

1.4 Graffoo visual notation

This section provides the main Graffoo elements employed in this document. A
detailed description can be consulted in the OWL standard specifications [15] and
in the Graffoo user guide [9].

a class restriction / a datatype /

"a literal value"@en Oan instance
of a class

a datatype restriction

Figure 4: Graffoo visual notation for classes, instances and datatypes

A yellow rectangle with solid black border is used to declare classes. Solid black
and labelled arrows are used to declare class axioms. A green rhomboid with solid

subject ———— predicate ——>| object

domain |&—— object property —| range
domain [0—— data property
domain i\i annotation property

resource f---------------4 additional axiomslﬁ

Figure 5: Graffoo visual notation for object and data properties and generic links

2. Transformation of UML classes and attributes

black border is used to declare datatypes. Solid black and labelled arrows are used
to declare class axioms.

A pink circle with solid black border is used to declare individuals. Solid black and
labelled arrows are used to declare axioms and assertions among individuals.

A green solid line is used to declare data properties, where the empty circle at the
beginning identifies the property domain while the empty arrow at the end indicates
the property range. A blue solid line is used to declare object properties, where the
solid circle at the beginning identifies the property domain while the solid arrow at
the end indicates the property range.

The following sections present the transformation rules necessary for converting the
UML eProcurement conceptual model into a formal OWL ontology.

2 Transformation of UML classes and attributes

In this section are specified transformation rules for UML class and attribute ele-
ments. Table 1 provides an overview of the section coverage.

UML element Rules in core on- Rules in data Rules in reas-
tology layer shape layer noning layer

Class Rule 1 Rule 2

Abstract class Rule 3

Attribute Rule 4 Rule 5

Attribute type Rule 7 Rule 6

Attribute multiplicity Rule 8 Rule 9, 10

Table 1: Overview of transformation rules for UML classes and attributes

2.1 Class

In UML, a Class [5] is purposed to specify a classification of objects. UML represents
atomic classes as named elements of type Class without further features. In OWL,
the atomic class, owl:Class, has no intension. It can only be interpreted by its name
that has a meaning in the world outside the ontology. The atomic class is a class
description that is simultaneously a class axiom [1].

2. Transformation of UML classes and attributes

Figure 6: Visual representation of a class in UML (on the left) and OWL (on the
right)

Rule 1 (Class — in core ontology layer). Specify declaration axiom for UML Class
as OWL Class where the URI and a label are deterministically generated from the
class name. The label and, if available, the description are ascribed to the class.

<owl:Class
rdf:about="http://base.uri/ClassName">
:ClassName a owl:Class ; <rdfs:label xml:lang="en">Class
rdfs:label "Class name"@en ; name</rdfs:label>

</owl:Class>

Listing 1: Class declaration in Turtle Listing 2: Class declaration in RDF /XML
syntax syntax

Rule 2 (Class — in data shape layer). Specify declaration axiom for UML Class
as SHACL Node Shape where the URI and a label are deterministically generated
from the class name.

<rdf:Description
rdf:about="http://base.uri/ClassName">
<rdf:type
rdf:resource="http://www.w3.0rg/ns/shacl#NodeShape">
:ClassName a sh:NodeShape . <rdf:Description>

Listing 3: Node shape Listing 4: Node shape declaration in RDF /XML
declaration in Turtle syntax syntax

2.2 Abstract class

In UML, an abstract Class [5] cannot have any instances and only its subclasses can
be instantiated. The abstract classes are declared just like the regular ones (Rule
1 and 2) and in addition a constraint validation rule is generated to ensure that no
instance of this class is permitted.

OWL follows the Open World Assumption [15], therefore, even if the ontology does

10

2. Transformation of UML classes and attributes

not contain any instances for a specific class, it is unknown whether the class has any
instances. We cannot confirm that the UML abstract class is correctly defined with
respect to the OWL domain ontology, but we can detect if it is not using SHACL

constraints.
ClassName :ClassName

Figure 7: Visual representation of an abstract class in UML (on the left) and OWL
(on the right)

Rule 3 (Class — in data shape layer). Specify declaration axiom for UML Class
as SHACL Node Shape with a SPARQL constraint that selects all instances of this
class.

:ClassName <sh:NodeShape
rdf:type sh:NodeShape ; rdf:about="http://base.uri/ClassName">
sh:sparql [<sh:sparql rdf:parseType="Resource">
sh:select """SELECT $this <sh:select>SELECT $this
WHERE { WHERE {
$this a :ClassName . $this a :ClassName .
})
e </sh:select>
] g </sh:sparql>

</sh:NodeShape>

Listing 5: Instance checking constraint Listing 6: Instance checking constraint in
in Turtle syntax RDF /XML syntax

2.3 Attribute

The UML attributes [5] are properties that are owned by a Classifier, e.g. Class.
Both UML attributes and associations are represented by one meta-model element
— Property. OWL also allows one to define properties. A transformation of UML
attribute to OWL data property or OWL object property bases on its type. If
the type of the attribute is a primitive type it should be transformed into OWL
datatype property. However, if the type of the attribute is a structured datatype,
class of enumeration , it should be transformed into an OWL object property.

11

2. Transformation of UML classes and attributes

ClassName / xsd:string /
- ‘attributel 1
—
attributel : xsd:string -attribute? -
attribute2 : OtherClass [oOrharC s]

Figure 8: Visual representation of class attributes in UML (on the left) and OWL
properties (on the right)

Rule 4 (Attribute — in core ontology layer). Specify declaration axiom(s) for at-
tribute(s) as OWL data or object properties deciding based on their types. The
attributes with primary types should be treated as data properties, whereas those
typed with classes or enumerations should be treated as object properties.

<owl:DatatypeProperty
rdf:about="http://base.uri/attributel">
<rdfs:label xml:lang="en">attribute
1</rdfs:label>
<skos:definition
xml:lang="en">Description of the

:attributel a owl:DatatypeProperty ; attribute meaning</skos:definition>
rdfs:label "attribute 1"@en; </owl:DatatypeProperty>
skos:definition "Description of the <owl:0bjectProperty
attribute meaning"@en; rdf:about="http://base.uri/attribute2">
. <rdfs:label xml:lang="en">attribute
:attribute2 a owl:0bjectProperty ; 1</rdfs:label>
rdfs:label "attribute 2"@en; <skos:definition
skos:definition "Description of the xml:lang="en">Description of the
attribute meaning"@en; attribute meaning</skos:definition>

</owl:0bjectProperty>

Listing 7: Property declaration in Listing 8: Property declaration in
Turtle syntax RDF /XML syntax

2.4 Attribute owner

Rule 5 (Attribute domain — in reasnoning layer). Specify data (or object) property
domains for attribute(s).

12

2. Transformation of UML classes and attributes

<owl:DatatypeProperty
rdf:about="http://base.uri/attributel">
<rdfs:domain

rattributel a rdf:resource="http://base.uri/ClassName"/>
owl:DatatypeProperty ; </owl:DatatypeProperty>
rdfs:domain :ClassName ; <owl:0bjectProperty
. rdf:about="http://base.uri/attribute2">
:attribute2 a owl:0bjectProperty ; <rdfs:domain
rdfs:domain :ClassName ; rdf:resource="http://base.uri/ClassName" />

</owl:0bjectProperty>

Listing 9: Domain specification Listing 10: Domain specification in
in Turtle syntax RDF /XML syntax

2.5 Attribute type

Rule 6 (Attribute type — in reasnoning layer). Specify data (or object) property
range for attribute(s).

<owl:DatatypeProperty
rdf:about="http://base.uri/attributel">
<rdfs:range

rattributel a rdf:resource="http://www.w3c.org...#string"/>
owl:DatatypeProperty; </owl:DatatypeProperty>
rdfs:range xsd:string; <owl:0bjectProperty
. rdf:about="http://base.uri/attribute2">
:attribute2 a owl:0bjectProperty; <rdfs:range
rdfs:range :0tehrClass; rdf:resource="http://base.uri/OtherClass"/>

. </owl:0bjectProperty>
Listing 11: Range specification Listing 12: Range specification in RDF /XML
in Turtle syntax syntax

Rule 7 (Attribute range shape — in data shape layer). Within the SHACL Node
Shape corresponding to the UML class, specify property constraints, for each UML
attribute, indicating the range class or datatype.

13

2. Transformation of UML classes and attributes

<sh:NodeShape
rdf:about="http://base.uri/ClassName">
<sh:property>
<sh:PropertyShape>

<sh:path
rdf:resource="http://base.uri/attributel"/>
:ClassName a sh:NodeShape ; <sh:name>attribute 1</sh:name>
sh:property [<sh:datatype
a sh:PropertyShape ; rdf:resource="http://www.w3c.org...#string"/>
sh:path :attributel ; </sh:PropertyShape>
sh:datatype xsd:string ; </sh:property>
sh:name "attribute 1" ; <sh:property>
1; <sh:PropertyShape>
sh:property [<sh:path
a sh:PropertyShape ; rdf:resource="http://base.uri/attribute2"/>
sh:path :attribute2 ; <sh:name>attribute 2</sh:name>
sh:class :0therClass ; <sh:class
sh:name "attribute 2" ; rdf:resource="http://base.uri/OtherClass"/>
1; </sh:PropertyShape>

c </sh:property>
Listing 13: Property class and </sh:NodeShape>

datatype constraint in Turtle Listing 14: Property class and datatype
syntax constraint in RDF /XML syntax

2.6 Attribute multiplicity

In [5], multiplicity bounds of multiplicity element are specified in the form of [<lower-
bound> .. <upper-bound>]. The lower-bound, also referred here as minimum cardinal-
ity or min is of a non-negative Integer type and the upper-bound, also referred here
as maximum cardinality or max, is of an UnlimitedNatural type (see Section 4.1).
The strictly compliant specification of UML in version 2.5 defines only a single value
range for MultiplicityElement. not limit oneself to a single interval. Therefore,
the below UML to OWL mapping covers a wider case — a possibility of specifying
more value ranges for a multiplicity element. Nevertheless, if the reader would like
to strictly follow the current UML specification, the particular single lower..upper
bound interval is therein also comprised.

Rule 8 (Attribute multiplicity — in data shape layer). Within the SHACL Node
Shape corresponding to the UML class, specify property constraints, corresponding
to each attribute, indicating the minimum and maximum cardinality, only where min

14

2. Transformation of UML classes and attributes

. owl:onProperty :attributel; |
i owl:cardinality "2";

A g)
rdfs:subClassOf . owl:onProperty :attribute2;
ClassName __» owlminCardinality "1";

— R
attributel : xsd:string [2..2] > owl:onProperty :attribute3;
attribute2 : xsd:string [1..*] rdfs:subClassOf owl:cardinality "2";
attribute3 : Xsd:string [*2] . * i R o —
attribute4 : xsd:string [1..2] | owl:intersectionOf (:

[owl:onProperty :attribute4; |
owl:minCardinality "1";]
. [owl:onProperty :attribute4;
. owl:maxCardinality "2";])

Figure 9: Visual representation of class attributes with multiplicity in UML (on
the left) and OWL class specialising an anonymous restriction of properties (on the
right)

and max are different from “*” (any) and multiplicity is not [1..1]. The expressions
are formulated according to the following cases.

A. exact cardinality, e.g. [2..2]

B. minimum cardinality only, e.g. [1..%]
C. maximum cardinality only, e.g. [*..2]
D

. minimum and maximum cardinality , e.g. [1..2]

15

2. Transformation of UML classes and attributes

:ClassName a sh:NodeShape ;
sh:property [
sh:path :attributel;
sh:minCount 2 ;
sh:maxCount 2 ;
sh:name "attribute 1" ;
1

Listing 15: FExact cardinality
constraint in Turtle syntax

:ClassName a sh:NodeShape ;
sh:property [
sh:path :attribute2;
sh:minCount 1 ;
sh:name "attribute 2" ;
1

Listing 17: Min cardinality
constraint in Turtle syntax

<sh:NodeShape rdf:about="http://base.uri/ClassName">
<sh:property>
<sh:PropertyShape>

<sh:path

rdf:resource="http://base.uri/attributel" />

<sh:name>attribute 1</sh:name>

<sh:minCount
rdf:datatype="http://www.w3.0rg...#integer"
>2</sh:minCount>

<sh:maxCount

rdf:datatype="http://www.w3.0rg...#integer"
>2</sh:maxCount>
</sh:PropertyShape>
</sh:property>
</sh:NodeShape>

Listing 16: Exact cardinality constraint in
RDF/XML syntax

<sh:NodeShape rdf:about="http://base.uri/ClassName">
<sh:property>
<sh:PropertyShape>
<sh:path
rdf:resource="http://base.uri/attribute2"/>
<sh:name>attribute 2</sh:name>
<sh:minCount
rdf:datatype="http://www.w3.0rg...#integer"
>1</sh:minCount>
</sh:PropertyShape>
</sh:property>
</sh:NodeShape>

Listing 18: Min
RDF/XML syntax

cardinality constraint in

16

2. Transformation of UML classes and attributes

:ClassName a sh:NodeShape ;
sh:property [
sh:path :attribute3;
sh:maxCount 2 ;
sh:name "attribute 3" ;
1

Listing 19: Max cardinality
constraint in Turtle syntax

:ClassName a sh:NodeShape ;
sh:property [
sh:path :attribute4;
sh:minCount 1 ;
sh:maxCount 2 ;
sh:name "attribute 4" ;
1

Listing 21: Min and max
cardinality constraint in Turtle
syntax

<sh:NodeShape rdf:about="http://base.uri/ClassName">
<sh:property>
<sh:PropertyShape>
<sh:path
rdf:resource="http://base.uri/attribute3"/>
<sh:name>attribute 3</sh:name>
<sh:maxCount
rdf:datatype="http://www.w3.0rg...#integer"
>2</sh:maxCount>
</sh:PropertyShape>
</sh:property>
</sh:NodeShape>

Listing 20: Max cardinality constraint in
RDF /XML syntax

<sh:NodeShape rdf:about="http://base.uri/ClassName">
<sh:property>
<sh:PropertyShape>
<sh:path
rdf:resource="http://base.uri/attribute4"/>
<sh:name>attribute 4</sh:name>
<sh:minCount
rdf:datatype="http://www.w3.0rg...#integer"
>1</sh:minCount>
<sh:maxCount
rdf:datatype="http://www.w3.0rg...#integer"
>2</sh:maxCount>
</sh:PropertyShape>
</sh:property>
</sh:NodeShape>

Listing 22: Min and max cardinality constraint in
RDF/XML syntax

It should be noted that upper-bound of UML MultiplicityElement can be specified
as unlimited: “*”. In OWL, cardinality expressions serve to restrict the number of
individuals that are connected by an object property expression to a given number
of instances of a specified class expression [15]. Therefore, UML unlimited upper-
bound does not add any information to OWL ontology, hence it is not transformed.

Rule 9 (Attribute multiplicity — in reasnoning layer). For each attribute multi-

17

2. Transformation of UML classes and attributes

plicity of the form (min .. max), where min and max are different than “*” (any),

specify a subclass axiom where the OWL class, corresponding to the UML class, spe-
cialises an anonymous restriction of properties formulated according to the following
cases.

A. exact cardinality, e.g. [|2..2]

B. minimum cardinality only, e.g. [1..%]
C. maximum cardinality only, e.g. [*..2]
D

. maximum and maximum cardinality , e.g. [1..2]

<owl:Class rdf:about="http://base.uri/ClassName">
<rdfs:subClass0f>
<owl:Restriction>

:ClassName a owl:Class ; <owl:onProperty
rdfs:subClassOf [a rdf:resource="http://base.uri/attributel"/>
owl:Restriction ; <owl:cardinality
owl:cardinality rdf:datatype="http://www.w3.0rg...#integer"
"2"~xsd:integer; >2</owl:cardinality>
owl:onProperty :attributel ; </owl:Restriction>
I 8 </rdfs:subClass0f>

</owl:Class>

Listing 23: Cardinality restriction Listing 24: Cardinality restriction in RDF /XML
in Turtle syntax syntax

<owl:Class rdf:about="http://base.uri/ClassName">
<rdfs:subClass0f>
<owl:Restriction>

:ClassName a owl:Class ; <owl:onProperty
rdfs:subClassOf [a rdf:resource="http://base.uri/attribute2"/>
owl:Restriction ; <owl:minCardinality
owl:minCardinality rdf:datatype="http://www.w3.0rg...#integer"
"1"~xsd:integer; >1</owl:cardinality>
owl:onProperty :attribute2 ; </owl:Restriction>
3 </rdfs:subClass0f>

. </owl:Class>
Listing 25: Min cardinality Listing 26: Min cardinality restriction in
restriction in Turtle syntax RDF /XML syntax

18

2. Transformation of UML classes and attributes

:ClassName a owl:Class ;
rdfs:subClassOf [a
owl:Restriction ;
owl:maxCardinality
"2"~"xsd:integer;
owl:onProperty :attribute3 ;

1 3

Listing 27: Max cardinality
restriction in Turtle syntax

:ClassName a owl:Class ;
rdfs:subClassOf [
rdf:type owl:Class ;
owl:intersectionOf (
[a owl:Restriction ;
owl:minCardinality
"1"~"xsd:integer;
owl:onProperty
rattribute4;]
[a owl:Restriction ;
owl:maxCardinality
"2"~"xsd:integer;
owl:onProperty
rattribute4;]
) 5
] 3

Listing 29: Min and max
cardinality restriction in Turtle
syntax

<owl:Class rdf:about="http://base.uri/ClassName">
<rdfs:subClass0f>
<owl:Restriction>
<owl:onProperty
rdf:resource="http://base.uri/attribute3"/>
<owl:maxCardinality
rdf:datatype="http://www.w3.0rg...#integer"
>2</owl:cardinality>
</owl:Restriction>
</rdfs:subClass0f>
</owl:Class>

Listing 28: Max
RDF /XML syntax

cardinality restriction in

<owl:Class rdf:about="http://base.uri/ClassName">
<rdfs:subClass0f>
<owl:Class>
<owl:intersectionOf rdf:parseType="Collection">
<owl:Restriction>
<owl:onProperty
rdf:resource="http://base.uri/attribute4"/>
<owl:minCardinality
rdf:datatype="...#integer"
>1</owl:minCardinality>
</owl:Restriction>
<owl:Restriction>
<owl:onProperty
rdf:resource="http://base.uri/attribute4"/>
<owl:maxCardinality
rdf:datatype="...#integer"
>2</owl:maxCardinality>
</owl:Restriction>
</owl:intersection0f>
</owl:Class>
</rdfs:subClass0f>
</owl:Class>

Listing 30: Min and max cardinality restriction in
RDF/XML syntax

Attributes with multiplicity exactly one correspond to functional object or data
properties in OWL. If we apply the previous rule specifying min and max cardinality

19

3. Transformation of UML connectors

will lead to inconsistent ontology. To avoid that it is important that min and max
cardinality are not generated from [1..1] multiplicity but only functional property
axiom.

Rule 10 (Attribute multiplicity “one” — in reasnoning layer). For each attribute

that has multiplicity exactly one, i.e. [1..1], specify functional property axiom.

<rdf:Description
rdf:about="http://base.uri/attribute5">

rattribute5 a <rdf:type

owl:FunctionalProperty . rdf:resource="http://...owl#FunctionalProperty"/>
Listing 31: Declaring </rdf:Description>
a functional property in Turtle Listing 32: Declaring a functional property in
syntax RDF /XML syntax

3 Transformation of UML connectors

In this section are specified transformation rules for UML association, generalisation
and dependency connectors. Table 2 provides an overview of the section coverage.

3.1 Unidirectional association

A binary Association specifies a semantic relationship between two member ends
represented by properties. Please note that in accordance with specification [5],
the association end names are not obligatory. However, we adhere to the UML
conventions |7], where specification of at one member ends, for unidirectional associ-
ation, and two member ends, for bidirectional association, is mandatory. Moreover,
provision of a connector (general) name is discouraged.

Rule 11 (Unidirectional association — in core ontology layer). Specify object prop-
erty declaration axiom for the target end of the association.

*Applicable to unidirectional and bidirectional connectors
tApplicable to bidirectional connectors only
HInherits all the rules from unidirectional and bidirectional associations

20

3. Transformation of UML connectors

UML element Rules in core on- Rules in data Rules in reas-
tology layer shape layer noning layer

Association* Rule 11

Association domain* Rule 12

Association range* Rule 14 Rule 13

Association multiplicity* Rule 15 Rule 16, 17

Association asymmetry”* Rule 18 Rule 19

Association inverse! Rule 20

Dependency? Rule 11

Dependency domaint Rule 12

Dependency range? Rule 34 Rule 33

Dependency multiplic- Rule 15 Rule 16

ity

Class generalisation Rule 21

Property generalisation Rule 22

Class equivalence Rule 23

Property equivalence Rule 24

Table 2: Transformation rules overview for UML connectors

rdfs:subClassOf
-relatesTo \\ .
]_._>{< relateSTO ¢ OW|10nPrOperty re|ate5To’
owl:minCardinality "1";

OtherClass ‘@therClass . N—

Figure 10: Visual representation of an UML unidirectional association (on the left)
and an OWL property with cardinality restriction on domain class (on the right)

:relatesTo a owl:0bjectProperty ; <owl:0bjectProperty
rdfs:label "relates 00"@en; rdf:about="http://base.uri/relatesTo">
skos:definition "Description of <rdfs:label xml:lang="en">relates to</rdfs:label>
the relationship <skos:definition xml:lang="en">Description of the
meaning"@en; relationship meaning</skos:definition>

</owl:0bjectProperty>

Listing 33: Property declaration Listing 34: Property declaration in RDF/XML
in Turtle syntax syntax

21

3. Transformation of UML connectors

3.2 Association source

Rule 12 (Association source — in reasnoning layer). Specify object property do-
main for the target end of the association.

:relatesTo a owl:0bjectProperty ;
rdfs:domain :ClassName ;

Listing 35: Domain specification
in Turtle syntax

3.3 Association target

<owl:0bjectProperty
rdf:about="http://base.uri/relatesTo">
<rdfs:domain
rdf:resource="http://base.uri/ClassName" />
</owl:0bjectProperty>

Listing 36: Domain specification in RDF /XML
syntax

Rule 13 (Association target — in reasnoning layer). Specify object property range
for the target end of the association.

:relatesTo a owl:0bjectProperty ;
rdfs:range :ClassName ;

Listing 37: Range specification
in Turtle syntax

<owl:0bjectProperty
rdf:about="http://base.uri/relatesTo">
<rdfs:range
rdf:resource="http://base.uri/ClassName" />
</owl:0bjectProperty>

Listing 38: Range specification in RDF /XML
syntax

Rule 14 (Association range shape — in data shape layer). Within the SHACL
Node Shape corresponding to the source UML class, specify property constraints

indicating the range class.

22

3. Transformation of UML connectors

<sh:NodeShape rdf:about="http://base.uri/ClassName">
<sh:property>
<sh:PropertyShape>

:ClassName a sh:NodeShape ; <sh:path
sh:property [rdf:resource="http://base.uri/relatesTo"/>
a sh:PropertyShape ; <sh:name>relates to</sh:name>
sh:path :relatesTo ; <sh:class
sh:class :0therClass ; rdf:resource="http://base.uri/0OtherClass"/>
sh:name "relates to" ; </sh:PropertyShape>
1; </sh:property>

</sh:NodeShape>

Listing 39: Property class Listing 40: Property class constraint in RDF /XML
constraint in Turtle syntax syntax

3.4 Association multiplicity

Rule 15 (Association multiplicity — in data shape layer). Within the SHACL
Node Shape corresponding to the source UML class, specify property constraints
indicating minimum and maximum cardinality according to cases provided by Rule

8. <sh:NodeShape rdf:about="http://base.uri/ClassName">

<sh:property>
<sh:PropertyShape>

<sh:path
rdf:resource="http://base.uri/relatesTo"/>
:ClassName a sh:NodeShape ; <sh:name>relates to</sh:name>
sh:property [<sh:minCount

sh:path :relatesTo; rdf:datatype="http://www.w3.0rg...#integer"

sh:minCount 1 ; >1</sh:minCount>

sh:name "relates to" ; </sh:PropertyShape>

1 </sh:property>

. </sh:NodeShape>
Listing 41: Min cardinality Listing 42: Min cardinality constraint in
constraint in Turtle syntax RDF /XML syntax

Rule 16 (Association multiplicity — in reasnoning layer). For the association target
multiplicity, where min and max are different than “*” (any) and multiplicity is not
[1..1], specify a subclass axiom where the source class specialises an anonymous
restriction of properties formulated according to cases provided by Rule 9.

23

3. Transformation of UML connectors

:ClassName a owl:Class ;
rdfs:subClassOf [a
owl:Restriction ;
owl:minCardinality
"1"~"xsd:integer;
owl:onProperty :relatesTo ;
] 3

Listing 43: Min cardinality
restriction in Turtle syntax

<owl:Class rdf:about="http://base.uri/ClassName">
<rdfs:subClass0f>
<owl:Restriction>
<owl:onProperty
rdf:resource="http://base.uri/relatesTo"/>
<owl:minCardinality
rdf:datatype="http://www.w3.0rg...#integer"
>1</owl:cardinality>
</owl:Restriction>
</rdfs:subClass0f>
</owl:Class>

Listing 44: Min cardinality restriction in
RDF /XML syntax

Rule 17 (Association multiplicity “one” — in reasnoning layer). If the association
multiplicity is exactly one, i.e. [1..1], specify functional property axiom like in Rule

10.

:relatesTo a

owl:FunctionalProperty .
Listing 45: Declaring
a functional property in Turtle
syntax

<rdf:Description
rdf:about="http://base.uri/relatesTo">
<rdf:type
rdf:resource="http://...owl#FunctionalProperty"/>
</rdf:Description>

Listing 46: Declaring a functional property in
RDF/XML syntax

3.5 Recursive association

In case of recursive associations, that are from one class to itself, the transformation
rules must be applied as in the case of regular unidirectional association, which are
from Rule 11 to Rule 17. In addition the association must be marked as asymmetric

expressed in Rule 19.

Rule 18 (Association asymmetry — in data shape layer). Within the SHACL Node
Shape corresponding to the UML class, specify SPARQL constraint selecting in-
stances connected by the object property in a reciprocal manner.

24

3. Transformation of UML connectors

ClassName

relatesTo

owl:onProperty :relatesTo;
owl:minCardinality "1";

rdfs:subClassOf

:ClassName

—
:relatesTo

Figure 11: Visual representation of an UML recursive association (on the left) and
OWL recursive properties with cardinality restrictions on domain class (on the right)

:ClassName a sh:NodeShape ;
sh:sparql [

sh:select """
SELECT ?this ?that
WHERE {
?this :relatesTo ?that .
?that :relatesTo this .
L

Listing 4T: Declaring an
asymmetric property in Turtle
syntax

<sh:NodeShape
rdf:about="http://base.uri/ClassName">
<sh:sparql rdf:parseType="Resource">
<sh:select>
SELECT ?this ?that
WHERE {
?this :relatesTo ?that .
?that :relatesTo ?this .}
</sh:select>
</sh:sparql>
</sh:NodeShape>

Listing 48: Declaring an asymmetric property
in RDF /XML syntax

Rule 19 (Association asymmetry — in reasnoning layer). Specify the asymmetry
object property axiom for each end of a recursive association.

<rdf:Description

:relatesTo a
owl:AsymmetricProperty .

rdf:about="http://base.uri/relatesTo">

<rdf:type

rdf:resource="http://...owl#AsymmetricProperty"/>

Listing 49: Declaring </rdf:Description>
an asymmetric property in Listing 50: Declaring an asymmetric property in
Turtle syntax RDF /XML syntax

25

3. Transformation of UML connectors

ClassName
. owl:onProperty :relatesTo;

; :ClassName [— rdfs:subClassOf > . gy e wan. |

* | isRelated To : owl:minCardinality "1";

3 S .f

relatesTo :isRelated To
1..* | relatesTo + l

OtherClass :OtherClass

Figure 12: Visual representation of an UML bidirectional association (on the left)
and OWL properties with cardinality restrictions on domain class (on the right)

3.6 Bidirectional association

The bidirectional associations should be treated, both on source and target ends,
like two unidirectional associations. The transformation rules from Rule 11 to Rule
17 must be applied to both ends. In addition these rule the inverse relation axiom
must be specified.

Rule 20 (Association inverse — in reasnoning layer). Specify inverse object prop-
erty between the source and target ends of the association.

<owl:0bjectProperty
rdf:about="http://base.uri/relatesTo">
<owl:inverseOf
:relatesTo owl:inverseOf rdf:resource="http://base.uri/isRelatedTo"/>
:isRelatedTo . </owl:0bjectProperty>

Listing 51: Declaring an inverse Listing 52: Declaring an inverse property in
property in Turtle syntax RDF /XML syntax

3.7 Unidirectional dependency

The UML dependency connectors should be transformed by the rules specified for
UML association connectors.

3.8 Class generalisation

Generalisation [5] defines specialization relationship between Classifiers. In case of
UML classes it relates a more specific Class to a more general Class.

UML generalisation set [5] groups generalizations; incomplete and disjoint con-

26

3. Transformation of UML connectors

straints indicate that the set is not complete and its specific Classes have no common
instances. The UML conventions |7] specify that all sibling classes are by default
disjoint, therefore even if no generalisation set is provided it is assumed to be im-

plicit.
SuperClass
/ \ rdfs:subClassOf rdfs:subClassOf

ClassName OtherClass

[:ClassName] [:OtherClass]

Figure 13: Visual representation of UML generalisation (on the left) and OWL
subclass relation (on the right)

Rule 21 (Class generalisation — in core ontology layer). Specify subclass axiom
for the generalisation between UML classes. Sibling classes must be disjoint with
one another.

<owl:Class rdf:about="http://base.uri/ClassName">
<rdfs:subClassOf
rdf:resource="http://base.uri/SuperClass"/>
</owl:Class>

<owl:Class
:ClassName rdfs:subClassOf rdf:about="http://base.uri/OtherClass">
:SuperClass. <rdfs:subClassOf
:0therClass rdfs:subClassOf rdf:resource="http://base.uri/SuperClass"/>
:SuperClass; <owl:disjointWith
owl:disjointWith :ClassName ; rdf:resource="http://base.uri/ClassName" />

</owl:Class>

Listing 53: Sub-classification in Listing 54: Sub-classification in RDF /XML
Turtle syntax syntax

3.9 Property generalisation

Generalization [5] defines specialization relationship between Classifiers. In case of
the UML associations it relates a more specific Association to more general Associ-
ation.

27

3. Transformation of UML connectors

(o Je—

rF ¢
5 Z
] . . <
1 ClassName L ‘ X -relatesTo :isRelatedTo)
relatesTo hasSister 0 L
=
- L—— :OtherClass ’—;—‘
isRelated To OtherCl isSisterOf | :hasSister rdfs:subPropertyO i
g QlmenClEss g relatesTo . :

1isSisterOf rdfs:subPropertyO
;isRelatedTo .

Figure 14: Visual representation of UML property generalisation (on the left) and
OWL sub-property relation (on the right)

Rule 22 (Property generalisation — in core ontology layer). Specify sub-property
axiom for the generalisation between UML associations and dependencies.

<owl:0bjectProperty
rdf:about="http://base.uri/hasSister">
<rdfs:subProperty0f
rdf:resource="http://base.uri/relatesTo"/>
</owl:0bjectProperty>
<owl:0bjectProperty

rhasSister rdfs:subPropertyOf rdf:about="http://base.uri/isSister0f">
:relatesTo . <rdfs:subProperty0f

:isSister0f rdfs:subPropertyOf rdf:resource="http://base.uri/isRelatedTo"/>
:isRelatedTo . </owl:0bjectProperty>

Listing 05! Property Listing 56: Property specialisation in

specialisation in Turtle syntax ~ RDF/XML syntax

3.10 Class equivalence

Rule 23 (Equivalent classes — in reasnoning layer). Specify equivalent class axiom
for the generalisation with «equivalent» or «complete» stereotype between UML

28

4. Transformation of UML datatypes

classes.

SuperClass

<equivalent>>

ClassName

4

owl:equivalentClass

:ClassName

Figure 15: Visual representation of UML class equivalence (on the left) and OWL

class equivalence (on the right)

:ClassName owl:equivalentClass
:SuperClass.

Listing 57: Class equivalence in

Turtle syntax

<owl:Class rdf:about="http://base.uri/ClassName">
<owl:equivalentClass
rdf:resource="http://base.uri/SuperClass"/>
</owl:Class>

Listing 58: Class equivalence in RDF/XML
syntax

3.11 Property equivalence

Rule 24 (Equivalent properties — in reasnoning layer). Specify equivalent property
axiom for the generalisation with «equivalent» or «complete» stereotype between

UML properties.

:hasSister owl:equivalentProperty
:relatesTo .

:isSisterOf
owl:equivalentProperty
:isRelatedTo .

Listing 59: Property equivalence
in Turtle syntax

<owl:0bjectProperty
rdf:about="http://base.uri/hasSister">
<owl:equivalentProperty
rdf:resource="http://base.uri/relatesTo"/>
</owl:0bjectProperty>
<owl:0bjectProperty
rdf:about="http://base.uri/isSister0f">
<owl:equivalentProperty
rdf:resource="http://base.uri/isRelatedTo"/>
</owl:0bjectProperty>

Listing 60: Property equivalence in RDF /XML
syntax

4 Transformation of UML datatypes

In this section are specified transformation rules for UML datatypes and enumera-
tions. Table 3 provides an overview of the section coverage.

29

4. Transformation of UML datatypes

UML element Rules in core on- Rules in data Rules in reas-
tology layer shape layer noning layer

Primitive datatype Rule 25

Structured datatype Rule 26

Enumeration Rule 27 Rule 29

Enumeration item Rule 28

Table 3: Overview of transformation rules for UML datatypes

4.1 Primitive datatype

The UML primitive type defines a predefined datatype without any substructure.
The UML specification [5] predefines five primitive types: String, Integer, Boolean,
UnlimitedNatural and Real. Here we extended those to the list provided in Table 4.

<DataType> <DataType> xsd:string /xsd:boolean/
Text xsd:boolean
<DataType>

DatatypeName /.DatatypeName/

Figure 16: Visual representation of an UML Datatype (on the left) and an OWL
Datatype (on the right)

Rule 25 (Datatype — in core ontology layer). Specify datatype declaration axiom
for UML datatype as follows:

e UML primitive datatypes are declared as the mapped XSD datatype in Table
4.

e XSD and RDF(S) datatypes are declared as such.

e Model specific datatypes are declared as such.

30

4. Transformation of UML datatypes

UML datatype

XSD datatype

Boolean xsd:boolean
Float xsd:float
Integer xsd:integer
Char xsd:string
String xsd:string
Short xsd:short
Long xsd:long
Decimal xsd:decimal
Real xsd:float
Date xsd:date
Numeric xsd:integer
Text xsd:string

Table 4: Mapping of UML primitive types to XSD datatypes

xsd:string a rdfs:Datatype ;
rdfs:label "String"@en ;
skos:definition "Description of
the datatype meaning"@en ;

xsd:boolean a rdfs:Datatype ;
rdfs:label "Boolean"@en ;
skos:definition "Description of
the datatype meaning"@en ;

:DatatypeName a rdfs:Datatype ;
rdfs:label "Datatype name"@en ;
skos:definition "Description of

the datatype meaning"@en ;

Listing 61: Datatype declaration
in Turtle syntax

<rdfs:Datatype
rdf:about="http://www.w3.0rg/2001/XMLSchema#string">
<rdfs:label xml:lang="en">String</rdfs:label>
<skos:definition xml:lang="en">Description of the
datatype meaning</skos:definition>
</rdfs:Datatype>
<rdfs:Datatype
rdf:about="http://www.w3.0rg/2001/XMLSchema#boolean">
<rdfs:label xml:lang="en">Boolean</rdfs:label>
<skos:definition xml:lang="en">Description of the
datatype meaning</skos:definition>
</rdfs:Datatype>
<rdfs:Datatype
rdf:about="http://base.uri/DatatypeName">
<rdfs:label xml:lang="en">Datatype name</rdfs:label>
<skos:definition xml:lang="en">Description of the
datatype meaning</skos:definition>
</rdfs:Datatype>

Listing 62: Datatype declaration in RDF/XML
syntax

31

4. Transformation of UML datatypes

4.2 Structured datatypes

The UML structured datatype [5] has attributes and is used to define complex data
types. The structured datatypes should be treated as classes.

Rule 26 (Structured Datatype — in core ontology layer). Specify OWL class dec-
laration axiom for UML structured datatype.

4.3 Enumeration

UML Enumerations [5] are kinds of datatypes, whose values correspond to one of
user-defined literals. They should be transformed into SKOS [13] concept schemes
comprising the concepts corresponding to enumerated items.

< Enumeration>>
ControlledList

itemA—"First item’
itemB="Second item’

Figure 17: Visual representation of an UML Enumeration

[skos:ConceptScheme] [skos:Concept]

A X
rdf:type rdf:type
\

O ZContro”edList < - SkOS:inSch.e'| |.|e » :|tem/ \O
e o . L b |
skos:prefLabel \.:lt o skos pr\f]c abe

\l/ Il n
"Controlled list"@en skos:prefLabel ltem A"@en

{

"ltem B"@en

Figure 18: Visual representation of a SKOS concept scheme with concepts

32

4. Transformation of UML datatypes

Rule 27 (Enumeration — in core ontology layer). Specify SKOS concept scheme
instantiation axiom for an UML enumeration.

:ControlledList a
skos:ConceptScheme ;

rdfs:label "Controlled list" ;

skos:prefLabel "Controlled
list"@en ;

skos:definition "Definition of
the concept scheme
meaning"@en ;

Listing 63: Concept scheme
instantiation in Turtle syntax

<skos:ConceptScheme
rdf:about="http://base.uri/ControlledList">
<rdfs:label>Controlled list</rdfs:label>
<skos:prefLabel xml:lang="en">Controlled
list</skos:prefLabel>
<skos:definition xml:lang="en">Definition of the
concept scheme meaning</skos:definition>
</skos:ConceptScheme>

Listing 64: Concept scheme instantiation in
RDF /XML syntax

Rule 28 (Enumeration items — in core ontology layer). Specify SKOS concept
instantiation axiom for an UML enumeration item.

:itemA a skos:Concept ;
skos:inScheme :ControlledList ;
rdfs:label "Item A" ;
skos:prefLabel "Item A"@en ;
skos:definition "Description fo

the concept meaning"@en ;

:itemB a skos:Concept ;
skos:inScheme :ControlledList ;
rdfs:label "Item B"
skos:prefLabel "Item B"@en ;
skos:definition "Description fo

the concept meaning"@en ;

Listing 65: Concept instantiation
in Turtle syntax

<skos:Concept rdf:about="http://base.uri/itemA">
<skos:inScheme
rdf:resource="http://base.uri/ControlledList"/>
<rdfs:label>Item A</rdfs:label>
<skos:preflLabel xml:lang="en">Item A</skos:prefLabel>
<skos:definition xml:lang="en">Description fo the
concept meaning</skos:definition>
</skos:Concept>
<skos:Concept rdf:about="http://base.uri/itemB">
<skos:inScheme
rdf:resource="http://base.uri/ControlledList"/>
<rdfs:label>Item B</rdfs:label>
<skos:preflLabel xml:lang="en">Item B</skos:preflLabel>
<skos:definition xml:lang="en">Description fo the
concept meaning</skos:definition>
</skos:Concept>

Listing 66: Concept instantiation in RDF/XML
syntax

Rule 29 (Enumeration — in reasnoning layer). For an UML enumeration, specify
an equivalent class restriction covering the set of individuals that are skos:inScheme

of this enumeration.

33

5. Transformation of UML descriptors

<owl:Class rdf:about="http://base.uri/ControlledList">
<owl:equivalentClass>

:ControlledList a owl:Class ; <owl:Restriction>
owl:equivalentClass [<owl:onProperty
rdf:type owl:Restriction ; rdf:resource=".../02/skos/core#inScheme" />
owl:allValuesFrom <owl:hasValue
:ControlledList ; rdf:resource="http://base.uri/ControlledList"/>
owl:onProperty skos:inScheme ; </owl:Restriction>
1; </owl:equivalentClass>

</owl:Class>

Listing 67: In-scheme equivalent Listing 68: In-scheme equivalent class in RDF /XML
class in Turtle syntax syntax

5 Transformation of UML descriptors

In this section are specified transformation rules for UML descriptive elements.
Table 5 provides an overview of the section coverage.

UML element Rules in core on- Rules in data Rules in reas-
tology layer shape layer noning layer

NAme Rule 30 Rule 30 Rule 30

Note Rule 31 Rule 31 Rule 31

Comment Rule 32 Rule 32 Rule 32

Table 5: Overview of transformation rules for UML datatypes

5.1 Name

Most of the UML elements are named. The UML conventions [7] dedicate an ex-
tensive section to the naming conventions and how deterministically to generate an
URI and a label from the UML element name. The label should be associated to
the resource URI by rdfs:label and, even if redundant, also as skos:prefLabel.

Rule 30 (Label). Specify a label for UML element.

34

5. Transformation of UML descriptors

:ResourceName <rdf:Description
rdfs:label "Resource name" ; rdf:about="http://base.uri/ResourceName">
skos:prefLabel "Resource <rdfs:label>Resource name</rdfs:label>
name"@en ; <skos:prefLabel xml:lang="en">Resource

: name</skos:prefLabel>
Listing 69: TLabels in Turtle </rdf:Description>
syntax Listing 70: Labels in RDF /XML syntax

5.2 Note

Most of the UML element foresee provisions of descriptions and notes. They should
be transformed into rdfs:comment and skos:definition.

Rule 31 (Description). Specify a description for UML element.

<rdf:Description
rdf:about="http://base.uri/ResourceName">
<rdfs:comment>Description of teh resource

:ResourceName meaning</rdfs:comment>
rdfs:comment "Description of teh <skos:definition
resource meaning" ; xml:lang="en">Description of teh
skos:definition "Resource name"@en ; resource meaning</skos:definition>

</rdf:Description>

Listing 71: Description in Turtle Listing 72: Description in RDF /XML
syntax syntax

5.3 Comment

In accordance with [5], every kind of UML Element may own Comments (see Figure
19). They add no semantics but may represent information useful to the reader. In
OWL it is possible to define the annotation axiom for OWL Class, Datatype, Object-
Property, DataProperty, AnnotationProperty and NamedIndividual. The textual
explanation added to UML Class is identified as useful for conceptual modelling [3],
therefore the Comments that are connected to UML Classes are taken into consid-
eration in the transformation.

As UML Comments add no semantics, they are not used in any method of semantic
validation. In OWL the AnnotationAssertion [15] axiom does not add any semantics
either, and it only improves readability.

35

6. Additional rules

ClassName

This is an additional com-
ment on ClassName

ClassName

rdfs:comment

|

"This is an additional comment on ClassName"®@en

Figure 19: Visual representation of an UML comment (on the left) and an OWL

comment (on the right)

Rule 32 (Comment).
an UML element.

:ClassName
rdfs:comment "This is an additional
comment on ClassName" ;
skos:editorialNote "This is an
additional comment on
ClassName"@en ;

Listing 73: Comment in Turtle syntax

6 Additional rules

Specify annotation axiom for UML Comment associated to

<rdf:Description
rdf:about="http://base.uri/ClassName">
<rdfs:comment>This is an additional
comment on ClassName</rdfs:comment>
<skos:editorialNote xml:lang="en">This is
an additional comment on
ClassName</skos:definition>
</rdf:Description>

Listing 74: Comment in RDF/XML
syntax

In this section are specified new transformation rules that were implemented after

the UML model refactoring.

Rule 33 (Dependency target — in reasnoning layer).

for the target end of the dependency.

Specify object property range

36

6. Additional rules

:relatesTo a <owl:0bjectProperty
owl:0bjectProperty ; rdf:about="http://base.uri/relatesTo">
rdfs:range skos:Concept ; <rdfs:range rdf:resource="skos:Concept"/>

. </owl:0bjectProperty>
Listing 75: Range specification Listing 76: Range specification in RDF /XML
in Turtle syntax syntax

Rule 34 (Dependency range shape — in data shape layer). Within the SHACL
Node Shape corresponding to the source UML class, specify property constraints
indicating the range class.

<sh:NodeShape
rdf:about="http://base.uri/relatesTo">
<sh:property>

:relatesTo a sh:NodeShape ; <sh:PropertyShape>

sh:property [<sh:path rdf:resource="skos:inScheme"/>

a sh:PropertyShape ; <sh:hasValue

sh:path skos:inScheme ; rdf:resource="http://base.uri/OtherClass"/>
sh:hasValue :0therClass ; </sh:PropertyShape>

g </sh:property>

</sh:NodeShape>

Listing 77: Property class Listing 78: Property class constraint in RDF /XML
constraint in Turtle syntax syntax

37

Bibliography

1]

2]

131

4]

[5]

[6]

|7l

8]

C. Atkinson and K. Kiko. A detailed comparison of uml and owl, June 2005.
URL https://madoc.bib.uni-mannheim.de/1898/.

D. Beckett. RDF/xml syntax specification (revised). W3C recommendation,
W3C, Feb. 2004. http://www.w3.org/TR/2004/REC-rdf-syntax-grammar-
20040210,/

G. Booch, J. Rumbaugh, and I. Jacobson. Unified Modeling Language User
Guide, The (2nd Edition) (Addison-Wesley Object Technology Series). Addison-
Wesley Professional, 2005. ISBN 0321267974.

G. Carothers and E. Prud’hommeaux. RDF 1.1 turtle. W3C recommendation,
W3C, Feb. 2014. http://www.w3.org/TR/2014/REC-turtle-20140225/.

S. Cook, C. Bock, P. Rivett, T. Rutt, E. Seidewitz, B. Selic, and D. Tolbert.
Unified modeling language (UML) version 2.5.1. Standard formal/2017-12-05,
Object Management Group (OMG), Dec. 2017. URL https://www.omg.org/
spec/UML/2.5.1.

E. Costetchi. eProcurement ontology architecture and formalisation specifi-
cations. Recommendation, Publications Office of the European Union, April
2020.

E. Costetchi. eProcurement uml conceptual model conventions. Recommenda-
tion, Publications Office of the European Union, April 2020.

O. El Hajjamy, K. Alaoui, L. Alaoui, and M. Bahaj. Mapping uml to owl2

ontology. Journal of Theoretical and Applied Information Technology, 90(1):
126, 2016.

38

https://madoc.bib.uni-mannheim.de/1898/
https://www.omg.org/spec/UML/2.5.1
https://www.omg.org/spec/UML/2.5.1

Bibliography

19]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

17]

18]

R. Falco, A. Gangemi, S. Peroni, D. Shotton, and F. Vitali. Modelling owl
ontologies with graffoo. In Furopean Semantic Web Conference, pages 320-325.
Springer, 2014.

A. H. Khan and I. Porres. Consistency of uml class, object and statechart

diagrams using ontology reasoners. Journal of Visual Languages & Computing,
26:42-65, 2015.

A. H. Khan, I. Rauf, and I. Porres. Consistency of uml class and statechart
diagrams with state invariants. In MODELSWARD, pages 14-24, 2013.

N. Loutas, N. Loutas, S. Kotoglou, and D. Hytiroglou. D04.07 - report on policy
support for eprocurement. Deliverable SC245DI07171, ISA programme of the
European Commission, 2016.

A. Miles and S. Bechhofer. SKOS simple knowledge organiza-
tion system reference. W3C recommendation, W3C, Aug. 2009.
http://www.w3.org/TR/2009/REC-skos-reference-20090818 /.

H.-S. Na, O.-H. Choi, and J.-E. Lim. A method for building domain ontologies
based on the transformation of uml models. In Fourth International Conference
on Software Engineering Research, Management and Applications (SERA’06),
pages 332-338. IEEE, 2006.

B. Parsia, P. Patel-Schneider, and B. Motik. OWL 2 web ontology language
structural specification and functional-style syntax (second edition). W3C
recommendation, W3C, Dec. 2012. http://www.w3.org/TR/2012/REC-owl2-
syntax-20121211/.

M. Sadowska and Z. Huzar. Representation of uml class diagrams in owl 2 on
the background of domain ontologies. e-Informatica, 13(1):63-103, 2019.

G. Schreiber and F. Gandon. RDF 1.1 XML syntax. W3C recommendation,
W3C, Feb. 2014. http://www.w3.org/TR/2014/REC-rdf-syntax-grammar-
20140225/.

D. Wood, R. Cyganiak, and M. Lanthaler. RDF 1.1 concepts
and abstract syntax. W3C recommendation, W3C, Feb. 2014.
http://www.w3.org/TR/2014/REC-rdfl1-concepts-20140225/.

39

Bibliography

[19] Z. Xu, Y. Ni, L. Lin, and H. Gu. A semantics-preserving approach for extract-
ing owl ontologies from uml class diagrams. In International Conference on
Database Theory and Application, pages 122—-136. Springer, 2009.

[20] Z. Xu, Y. Ni, W. He, L. Lin, and Q. Yan. Automatic extraction of owl ontologies
from uml class diagrams: a semantics-preserving approach. World Wide Web,
15(5-6):517-545, 2012.

[21] J. Zedlitz and N. Luttenberger. Transforming between uml conceptual models
and owl 2 ontologies. In Terra Cognita ISWC, pages 15-26, 2012.

[22] J. Zedlitz and N. Luttenberger. Conceptual modelling in uml and owl-2. Inter-
national Journal on Advances in Software, 7(1):182-196, 2014.

40

	Introduction
	State of the art
	How to read this document
	UML visual notation
	Graffoo visual notation

	Transformation of UML classes and attributes
	Class
	Abstract class
	Attribute
	Attribute owner
	Attribute type
	Attribute multiplicity

	Transformation of UML connectors
	Unidirectional association
	Association source
	Association target
	Association multiplicity
	Recursive association
	Bidirectional association
	Unidirectional dependency
	Class generalisation
	Property generalisation
	Class equivalence
	Property equivalence

	Transformation of UML datatypes
	Primitive datatype
	Structured datatypes
	Enumeration

	Transformation of UML descriptors
	Name
	Note
	Comment

	Additional rules

